Solar Flow Battery Efficiently Stores Renewable Energy in Liquid Form

on July 15, 2020

Capturing energy from the Sun with solar panels is only half the story – that energy needs to be stored somewhere for later use. In the case of flow batteries, storage is relegated to vats of liquid. Now, an international team led by University of Wisconsin-Madison scientists has created a new version of these solar flow batteries that’s efficient and long-lasting.

To make the new device, the team combined several existing technologies. It’s a silicon/perovskite tandem solar cell, paired with a redox flow battery, which the team says will allow people to harvest and store renewable energy in one device. Not only is it efficient, but it should be inexpensive and simple enough to scale up for home use.

The energy-harvesting part of the equation combines the long-time industry-leading material – silicon – with a promising young upstart called perovskite. These tandem solar cells have proved better than either material alone, since the two materials capture different wavelengths of light.

For storage, the team turned to a flow battery. Traditionally, these devices contain two liquids, housed in separate tanks, that function as the electrolytes. Electricity from the solar cell charges one of the liquids, where it can sit more or less indefinitely. When the power is needed, the two liquids interact in a middle chamber, creating a chemical reaction that produces electricity.

The team used a theoretical modeling method to determine which chemicals would operate at the ideal voltage, to maximize efficiency. They settled on two organic compounds dissolved in saltwater, and tests with the final physical device confirmed that it was a good match.

The team recorded 20 percent efficiency, which is up there with the best. The device was able to maintain a high efficiency, and most of its capacity, over hundreds of hours and charge-discharge cycles. That gives it a much longer life than other flow batteries, whose acidic electrolytes tend to corrode the tanks.

read more
Fractal Energy Storage ConsultantsSolar Flow Battery Efficiently Stores Renewable Energy in Liquid Form

Flow Battery Could Make Renewable Energy Storage Economically Viable

on April 15, 2020

Researchers at the University of Southern California looking to crack the renewable energy storage problem have developed a new version of a redox flow battery from inexpensive and readily-available materials.

Though there are huge lithium-ion battery installations from the likes of Tesla that can store energy harvested from renewables like wind and solar, they’re not exactly cheap. The USC researchers looked to an existing design that stores energy in liquid form.

In the so-called redox flow battery, a positive chemical and a negative chemical are stored in separate tanks. The chemicals are pumped in and out of a chamber where they exchange ions across a membrane – flowing one way to charge and the other to discharge.

Though such systems have previously used expensive, dangerous and toxic vanadium and bromine dissolved in acid for their electrolytes in the past, we have seen recent designs that replace those with organic or more environment-friendly alternatives.

For its design, the USC team used a waste product of the mining industry and an organic material that can be made from carbon-based feedstocks, including carbon dioxide, and is already used in other redox flow batteries.

In tests, the iron sulfate solution and Anthraquinone disulfonic acid (AQDS) battery was found able to charge and discharge hundreds of times with “virtually no loss of power.” The researchers say that the inexpensive nature of the materials used could also lead to significant electricity cost savings compared to redox flow batteries using venadium, if manufactured at scale.

“To date there has been no economically viable, eco-friendly solution to energy storage that can last for 25 years,” said lead author on the study Sri Narayan. “Lithium-ion batteries do not have the long-life and vanadium-based batteries uses expensive, relatively toxic materials limiting large-scale use. Our system is the answer to this challenge. We foresee these batteries used in residential, commercial and industrial buildings to capture renewable energy.”

read more
Fractal Energy Storage ConsultantsFlow Battery Could Make Renewable Energy Storage Economically Viable

Energy Storage Merger to Drive Vanadium Flow Battery Market

on March 17, 2020
smart-energy-international

UK-based redT energy and US-based Avalon Battery Corporation have announced that they will merge, subject to shareholder approval, to become a global leader in vanadium flow batteries.

They aim to become key competitors to existing lithium-ion technology in the rapidly growing global energy storage market.

The merger unites the companies under a new name, Invinity Energy Systems (Invinity), and combines the existing strengths of both companies with the scale and market presence to compete with the major players in a global energy storage market, forecast for £55bn ($67bn) of new investment by 2024.

Vanadium flow batteries are a form of heavy-duty, stationary energy storage, used primarily in high-utilisation applications such as being coupled with industrial scale solar generation for distributed, low-carbon energy projects. This sort of application requires daily, heavy use and is well suited to flow battery technology, which is expected to become a £3.5bn market by 2028.

Larry Zulch, CEO of Invinity said: “The merged company will be a world leader in flow batteries. This gives us the platform to compete head-to-head against incumbent lithium-ion giants, and in so doing prove that our robust, safe, non-degrading energy storage solutions are the best solution for delivering the world’s ambitious decarbonisation targets.

read more
Fractal Energy Storage ConsultantsEnergy Storage Merger to Drive Vanadium Flow Battery Market

PV Tech Power 21: Flow in Focus, Long-Duration Contenders And The ESA

on December 18, 2019
Energy-Storage-News

The latest volume of PV Tech Power, Solar Media’s quarterly technical journal for the downstream sector, is now available to download free of charge.

This edition’s cover story comes from the deserts of the Middle East, where researchers are getting to grips with the issue of soiling and what can be done to prevent it.

We also take an extensive look at how solar is making great strides in the Middle East, and SolarPower Europe provides a glimpse at how digitalisation is taking over the solar ecosystem.

As always, ‘Storage & Smart Power’, the dedicated section curated and created by Energy-Storage.news, also returns as part of the magazine. This quarter, we look at:

Contenders: Long-duration technologies and who’s behind them

Some of the promising long-duration energy storage technologies – and their champions. While lithium-ion batteries get most of the headlines, long-duration energy storage solutions are gaining ground. We’ve profiled some of established and emerging concepts in this increasingly important class of storage technologies.

Redox flow batteries for renewable energy storage

A team from CENELEST, a joint research venture between the Fraunhofer Institute for Chemical Technology and the University of New South Wales, charts the rise of redox flow batteries. A truly deep dive, the article is a thorough examination of various types of flow energy storage and what stands between them and greater success.

Taking charge: Energy Storage Association CEO Kelly Speakes-Backman

Despite making huge strides forward, the energy storage industry is far from done with its work in helping stakeholders across the value chain understand the technologies and the roles they can play in a renewable energy future. Former regional utilities’ commissioner Kelly Speakes-Backman is one of the people working to make that happen every day. With more than 180 member organisations, ESA is speaking up for a big wedge of stakeholders in the energy sector that see renewables and energy storage as a day-to-day business as well as an aspiration and social good.

Many thanks to all that downloaded the PV Tech Power Volume 20 including the Energy Storage Special Report 2019, which is also still available as a standalone PDF from the ‘Resources’ section of this site.

read more
Fractal Energy Storage ConsultantsPV Tech Power 21: Flow in Focus, Long-Duration Contenders And The ESA

Flow Batteries: Leaders Starting To Live Up To Promise, Says Navigant

on December 10, 2019
Energy-Storage-News

Flow batteries have so far, failed to live up to the disruptive potential they promise, a new report says, but authors Alex Eller and William Tokash at Navigant Research have identified 12 leading vendors in the nascent field, based on metrics of strategy and execution.

In an industry (sub)segment that has already undergone rapid consolidation and seen some of those considered early leaders such as VIZn and Immergy fall by the wayside in the past three or four years, Navigant names Cellcube – which itself once had a rollercoaster journey of changing hands and investors – as top in the chart.

In the preamble to a 2018 interview with Cellcube president Stefan Schauss on this site in 2018, I wrote that the fortunes of Cellcube’s redox flow battery energy storage, spun out of technology developed at Gildemeister, “have been an interesting mirror to those of the overall technology class”.

Owned by junior mining entity Stina Resources, Cellcube Stefan Schauss told Energy-Storage.news the company had ambitions to realise full vertical integration, with the company seeing progressive shifts to longer durations of energy storage already seen in the energy market in places such as California as “just the tip of the peaking iceberg”.

Leaders, contenders alike are waiting for opportunity to scale up production

Joining Cellcube in a category of two marked ‘Leaders’ in the Navigant report (all 10 other companies named are described as ‘Contenders’) is Japan’s Sumitomo Electric, perhaps largely by virtue of deploying a 60MWh flow battery on the northern Japanese island of Hokkaido a few years back.

More recently, towards the end of 2017 the company said it would take its flow systems into the international market, beginning with a large commercial pilot project in Belgium. Then, at the end of 2018, Sumitomo also said it would connect a 2MW / 8MWh demonstration into the California wholesale market to provide frequency regulation and trade-based supply.

The potential advantages of flow batteries – and the challenges faced by providers of the various different flow technologies and sub-chemistries – are examined in great depth, in a feature article to be included in the forthcoming edition of our quarterly technical journal, PV Tech Power (vol.21). Co-authors Jens Noack, Nataliya Roznyatovskaya, Chris Menictas and Maria Skyllas-Kazacos from CENELEST, a joint research venture between the Fraunhofer Institute for Chemical Technology and the University of New South Wales chart a deep dive into everything from how redox flow batteries work, to the supply chain and sustainability of materials, to the challenges still ahead for commercialisation.

read more
Fractal Energy Storage ConsultantsFlow Batteries: Leaders Starting To Live Up To Promise, Says Navigant

Lockheed Martin Locked Onto 2020 Flow Battery Launch

on November 27, 2019
Energy-Storage-News

Defense and aerospace giant Lockheed Martin wants to be the first disruptive company of the flow battery era, with the expectation that its first devices will go into series production before the end of this year.

Energy-Storage.news met earlier this year with company VP for business development Dan Norton, who said that Lockheed Martin’s own coordination chemistry flow battery (CCFB) had neared the end of its development and test programme, which had gone “swimmingly and as planned”. The product has been some time in development, originally teased as expected to hit the market before the end of 2018, although this target was always understood to be flexible.

“We begin serial production on our unit number 1 towards the end of the year and we’ll go for full launch in the market some time next year,” Norton said, in an interview taped at this year’s Solar Power International in late September but only cleared for publication approval later.

That in itself is an indication of Lockheed Martin’s focus. The flow batteries are being developed within Lockheed’s Missiles and Fire Control division, and Norton said that as an energy security asset, the technology and market is “the next logical progression” for the company.

While Lockheed has already launched GridStar lithium and seen successful deployments of over 100 units in North America, as the market moves from shorter to longer duration energy storage, Norton said, it identified a further opportunity.

“So we invested in (Sun Catalyx), a technology that’s a spinout of MIT, to create a co-ordinated compound chemistry flow battery, that is human- and environmentally-safe, that is balance-of-plant cost-effective and that is deployable worldwide,” Dan Norton said.

Projects could be ‘multiple megawatts to hundreds of megawatts’
Long-duration flow batteries offer a potential to decouple energy and power, meaning that while they tend to cost more upfront than lithium-ion batteries, they can effectively scale up fairly easily, simply by increasing the capacity of the tanks the electrolyte is pumped through. While the small handful of flow battery companies already out there in the market tend to favour either vanadium or zinc bromine, Lockheed is keeping tight-lipped still on the makeup of the proprietary electrolyte its GridStar Flow products will use.

read more
Fractal Energy Storage ConsultantsLockheed Martin Locked Onto 2020 Flow Battery Launch

Lockheed Martin Locked Onto 2020 Flow Battery Launch

on November 26, 2019
Energy-Storage-News

Defense and aerospace giant Lockheed Martin wants to be the first disruptive company of the flow battery era, with the expectation that its first devices will go into series production before the end of this year.

Energy-Storage.news met earlier this year with company VP for business development Dan Norton, who said that Lockheed Martin’s own coordination chemistry flow battery (CCFB) had neared the end of its development and test programme, which had gone “swimmingly and as planned”. The product has been some time in development, originally teased as expected to hit the market before the end of 2018, although this target was always understood to be flexible.

“We begin serial production on our unit number 1 towards the end of the year and we’ll go for full launch in the market some time next year,” Norton said, in an interview taped at this year’s Solar Power International in late September but only cleared for publication approval later.

That in itself is an indication of Lockheed Martin’s focus. The flow batteries are being developed within Lockheed’s Missiles and Fire Control division, and Norton said that as an energy security asset, the technology and market is “the next logical progression” for the company.

While Lockheed has already launched GridStar lithium and seen successful deployments of over 100 units in North America, as the market moves from shorter to longer duration energy storage, Norton said, it identified a further opportunity.

“So we invested in (Sun Catalyx), a technology that’s a spinout of MIT, to create a co-ordinated compound chemistry flow battery, that is human- and environmentally-safe, that is balance-of-plant cost-effective and that is deployable worldwide,” Dan Norton said.

Projects could be ‘multiple megawatts to hundreds of megawatts’
Long-duration flow batteries offer a potential to decouple energy and power, meaning that while they tend to cost more upfront than lithium-ion batteries, they can effectively scale up fairly easily, simply by increasing the capacity of the tanks the electrolyte is pumped through. While the small handful of flow battery companies already out there in the market tend to favour either vanadium or zinc bromine, Lockheed is keeping tight-lipped still on the makeup of the proprietary electrolyte its GridStar Flow products will use.

read more
Fractal Energy Storage ConsultantsLockheed Martin Locked Onto 2020 Flow Battery Launch

Flow Batteries Picked For New Zealand’s Rural Telecoms Networks

on November 14, 2019
Energy-Storage-News

Australia-headquartered flow battery manufacturer Redflow’s zinc-bromine based devices have been picked by the New Zealand Rural Connectivity Group to help extend mobile coverage and internet connectivity to thousands of homes and businesses in remote areas.

New Zealand’s government created the RCG in 2017 as a critical infrastructure project aiming to extend mobile and wireless broadband coverage out to more than 34,000 rural homes and businesses, add 1,000km of mobile coverage to state highways and build 400 new cell sites in the process. The government is funding the RCG through a Telecommunications Development Levy, as well as a contribution of NZ$75 million (US$48.1 million) from New Zealand’s mobile network operators.

Redflow’s batteries will be paired with solar panels and backed up with a generator for the RCG sites. Redflow said that while its zinc-bromine batteries have been selected, commercial negotiations are now underway to “establish a direct relationship” for the purchase of batteries. The RCG project is aimed for completion by December 2022, while the first deployment of Redflow batteries looks likely to be installed by the end of this year, Redflow said.

“We have closely examined Redflow’s energy storage technology and believe it provides a compelling solution for RCG due to its deep cycling capability, its long life and its environmental benefits over competing technologies,” RCG head of procurement and commercial, Richard Spencer, said.

Energy-Storage.news recently reported on Redflow’s second telecoms sector deal in South Africa, where telecoms towers are being repowered with the company’s ZBM2 battery units. Redflow pointed out in a press release that it has also executed an off-grid project for Vodafone New Zealand, while company managing director and CEO Tim Harris said Redflow and RCG have been working together for about six months to reach this point. The roll-out will include some grid-connected as well as off-grid areas.

read more
Fractal Energy Storage ConsultantsFlow Batteries Picked For New Zealand’s Rural Telecoms Networks

Energy Storage Firm ESS Delivers Flow Battery System To Camp Pendleton

on May 17, 2019
Electric-Light-and-Power

ESS Inc., a maker of energy storage systems, deployed an Energy Warehouse long-duration flow battery system at Marine Corps Base Camp Pendleton in San Diego, California.

The 50 kW / 400 kWh battery is integrated into a microgrid with a CleanSpark microgrid controller and provides up to eight hours of storage to enable back-up capabilities for critical loads; operational energy cost savings through on-site generation with storage; and full islanding capabilities for resilience.

The project is being completed in partnership with the project’s prime contractor, Bethel-Webcor JV.

“We are pleased to commission our second Energy Warehouse system in a military microgrid application,” said Craig Evans, Founder and CEO of ESS Inc. “Camp Pendleton is the Marine Corps’ largest West Coast expeditionary training facility for Marine, Army and Navy units. The Camp will especially benefit from our battery’s solar-plus-storage capabilities, which enable the microgrid to store excess solar energy for later use during times of peak electricity demand.”

“We are proud to partner with ESS Inc. for the Camp Pendleton project, as it marks the first-ever deployment of a solar-plus-storage system utilizing an iron flow battery,” said Anthony Vastola, SVP of Projects for CleanSpark. “The solution operates in off-grid mode by default so as to maximize efficiency, utilize solar over-generation and extend the overall life of the system. As a whole, we expect the microgrid will provide energy and cost-savings, as well as improved energy security, to Camp Pendleton for years to come.”

CleanSpark provides advanced energy software and control technology that enables a plug-and-play enterprise solution to modern energy challenges. Our services consist of intelligent energy monitoring and controls, microgrid design and engineering, microgrid consulting services, and turnkey microgrid implementation services.

read more
Fractal Energy Storage ConsultantsEnergy Storage Firm ESS Delivers Flow Battery System To Camp Pendleton

‘Leapfrogging’ The Grid: Hybrid Lithium-Flow in Action at A Remote Thai Village Microgrid

on April 16, 2019
Energy-Storage-News

While energy storage, like the electrification of transport, is often discussed as the ‘Next Big Thing’ for first world economies, this emerging technology is starting to play an important role in developing nations too. Just as mobile telephony revolutionised telecommunications in developing economies during the past two decades by leapfrogging the need for fixed line services, energy storage systems are eliminating the requirement to connect remote communities to a national power grid.

Coupled with renewable energy produced by photovoltaic (PV) solar panels, energy storage systems in remote communities can store that energy until it is required overnight or on a cloudy day. An excellent demonstration of the benefits of energy storage systems in developing nations is Ban Pha Dan, a village in a mountainous region of northern Thailand that has long lacked electricity.

Up until now, people in Ban Pha Dan had to rely on candles and oil lamps for light at night or resort to four-wheel-drives carting in diesel for generators to generate electricity. The lack of electricity also resulted in a lack of road lighting, which made it difficult to travel at night. In a project backed by the Thai Government, Ban Pha Dan is using solar cells to generate power and a high-performance hybrid battery system, including Redflow ZBM2 zinc-bromine flow batteries and lithium batteries, to store and deliver energy for a village that is separated from the national electricity distribution network.

Combination of technologies to find the ‘best economic case’
Under its national Power Development Plan, announced in January this year by the Thailand National Energy Policy Council, chaired by Prime Minister Prayut Chan-o-cha, Thailand aims to prioritise the development of renewable energy sources for the period 2018-2037. The plan expects that non-fossil energy sources will account for 35% of the country’s total capacity by 2037.

TSUS Group General Manager Tossapon Jirattipong explains that Ban Pha Dan is a pilot project to enable Thai Government agencies to gain insight into lithium and zinc-bromine flow batteries for future deployments. “For this project, they needed to see the two things, first how to manage both flow batteries and lithium batteries,” he says.

“They expect that flow batteries should be the best for baseload management and, when demand gets higher, then lithium batteries can meet those peak demands. This configuration prolongs the life expectancy for both types of batteries.

read more
Fractal Energy Storage Consultants‘Leapfrogging’ The Grid: Hybrid Lithium-Flow in Action at A Remote Thai Village Microgrid