NextEra On Its ‘Secret Sauce’ For Energy Storage, 2 GW of Solar+Wind+Storage, 10 GW of Florida Solar, and More

on January 28, 2020

NextEra Energy signaled a strong quarter and year judging by the stock’s greater than 50% rise over the past twelve months.

For the full year of 2019, the company’s GAAP net income was $3.8 billion. NextEra Energy Resources, a group within the company that owns a majority of its renewable resources, earned just under $1.7 billion on the year. The company’s broader financial results can be found on its investor page.

The company commissioned 2.7 GW of renewable energy capacity including 700 MWac of solar power and 340 MW/~1.3 GWh of energy storage. In Florida, the company brought on 300 MWac of solar under its utility Florida Power & Light. That subsidiary of NextEra also noted that in 2020, it will deploy the first 750 MWac of its “10 GWac by 2030 goal,” and that it had secured the sites needed to build out those facilities.

5.8 GWac of future capacity was originated in the year, which included 900 MW/~3.6 GWh of energy storage. Of that newly originated solar volume, 50% of it included a battery storage component. The company also noted that more than 2 GW of that future capacity were “trifecta projects that combine wind, solar and battery storage together.”

CEO Jim Robo noted;

We continue to expect that by the middle of this decade, without incentives, new near-firm wind is going to be a $20 to $30 per megawatt hour product, and new near-firm solar is going to be a $30 to $40 per megawatt-hour product. At these prices, new near-firm renewables will be cheaper than the operating cost of most existing coal, nuclear, and less efficient oil and gas-fired generation units.

The terminology “near firm” means the plants will have some form of energy storage included in those prices. The company said it “increasingly sees storage as an important standalone business in its own right, as we are reviewing a number of opportunities to add storage to our existing solar sites to take advantage of the ITC and enhance the value of our existing projects for customers.”

read more
Fractal Energy Storage ConsultantsNextEra On Its ‘Secret Sauce’ For Energy Storage, 2 GW of Solar+Wind+Storage, 10 GW of Florida Solar, and More

California’s Home Solar Mandate pulls together roofer PetersenDean and Enphase

on January 28, 2020

US construction and home improvement company PetersenDean has selected Enphase’s equipment including battery storage for its solar home offerings, with a particular emphasis on California’s Home Solar Mandate.

Enphase will be the contractor’s “premier supplier”, the tech company said. While originally best known for its panel-level microinverters, Enphase’s “all-in-one smart energy system” now includes the solar microinverters along with battery storage and an energy management suite.

The battery energy storage systems are available in 3.4kWh and 10.1kWh usable capacities and are scalable to larger sizes, coming with 10-year limited warranties, while the microinverters have a 25-year warranty in line with solar system lifetime expectations.

Branded Encharge 3 and Encharge 10 respectively, the company opened pre-orders for the batteries in November last year at the height of conversation around California’s power line shut-offs in the wake of wildfires. Enphase said the microinverters are grid-forming and have an Always-On setting to allow homeowners to keep appliances running even when grid power is not.

As of the beginning of this year, California’s various existing policy measures to drive forward solar adoption in the state including the Self-Generation Incentive Programme (SGIP) were joined by the mandate, the first in the US to be introduced at state level.

Part of the building codes, solar installation company EnergySage recently wrote on its company blog that new homes constructed this year require the addition of a solar photovoltaic (PV) system as an electricity source, and should be sized adequately to meet the building’s annual electricity consumption. EnergySage noted that the addition of battery energy storage can somewhat reduce the sizing requirement – by as much as 25% in some cases as the batteries help to meet the required load.

While PetersenDean and Enphase are rolling out the systems in nine US states in total, Enphase president and CEO Badri Kothandaram referred directly to the importance of the California Home Solar Mandate in a statement.

read more
Fractal Energy Storage ConsultantsCalifornia’s Home Solar Mandate pulls together roofer PetersenDean and Enphase

Creating Energy Independence With Solar Panels & Storage Battery Systems In The Home

on January 27, 2020

When designing a house, one of the most important issues is energy efficiency. That means there needs to be the right amount of insulation in the foundation, walls and roof, energy efficient windows, and well placed on the periphery of the house. The house also should be placed on the property for optimal solar orientation. With these factors covered, the house will require minimal energy for heating and cooling.

A perfect solution for efficiently providing the energy for electricity is to install photovoltaic (PV) solar panels on the roof or next to the house. The house can get energy from the grid when there is no sun or inclement weather and feed energy back to the grid where this is allowed.

Some houses are totally off the grid because connecting to the grid would be too expensive or unavailable in that area. These houses require photo voltaic (PV) panels to provide energy and batteries to store the energy for periods when there is no solar energy and/or inclement weather. When a household stores solar energy produced on site and uses that energy when solar production is less than than the energy requirements in the house – it is called “self consumption.”

The house may also be connected to the grid and return excess energy to the grid when the battery is full or during peak periods of the day when the grid is overloaded.

I interviewed Lior Handelsman, VP of Marketing & Product Strategy and Founder of SolarEdge, a global leader in smart energy technology to get very up-to-date information on solar energy. The interview with Handelsman follows:

read more
Fractal Energy Storage ConsultantsCreating Energy Independence With Solar Panels & Storage Battery Systems In The Home

AI, Energy Storage And The Electrification Of Transport

on January 27, 2020

We are on the cusp of the next major energy transition – a transition that will move us towards a more sustainable future where renewable energies replace fossil fuels. But this transition is not going to happen overnight.

Academics and analysts are predicting that it could still take decades for the world to wean itself from fossil fuels, since some of the key technologies needed to deploy renewable energy on a massive scale, have seen very slow improvements over the years. For this transition to be expedited, energy storage solutions need to be improved and batteries are going to play a huge role in this evolution.

Current batteries and what could be next

Although constant improvements have been made in the 150 years that batteries have existed, only four commercially relevant chemistries have made it to market. The last major development was the lithium-ion (Li-ion) battery, whose identification and development are widely credited to Professor John Goodenough. His research in the 1980s led to its commercialisation by Sony in 1991.

Due to a relatively high energy-to-weight ratio, Li-ion batteries became very popular and are still considered the most promising battery chemistry. Although Li-ion offers many advantages over previous battery materials, improvements can still be made.

Electric modes of transportation will be a major driver of battery technology advancements. Bloomberg New Energy Finance (BNEF) predicts that by 2040, 57% of all passenger vehicle sales and over 30% of the global passenger vehicle fleet will be electric. If the electric vehicle predictions being forecasted are accurate, the commercial batteries market offers unlimited opportunity.

As such, researchers from large multi-national corporations, academic institutions, and technology startups are all looking for the successor to Li-ion.

Everyone wants to discover a battery that has a faster rate of charge and a higher energy density. But how do we get there? Experts, scholars, and the media, continue to speculate about battery technology and what’s going to be the next big breakthrough. Will it be new organic compounds, solid-state batteries, or something completely revolutionary that doesn’t require changing the chemistry of the battery?

Most startups looking to improve the performance of batteries are looking at solid-state batteries or improving Li-ion batteries using new chemical compounds. The main challenges with new chemistry include time and resources. If advancements are discovered in a lab environment, scaling the technology to commercialisation is a very, very long road.

According to Professor Paul Shearing, the Royal Academy of Engineering’s chair in emerging battery technologies: “The next 10 years are going to continue to be lithium-ion dominated. It’s taken a long time to get to this productivity and technological maturity level. For anything to catch up will take a while.”

read more
Fractal Energy Storage ConsultantsAI, Energy Storage And The Electrification Of Transport

Peak Performance: Could Mountains Create Long-Term Energy Storage?

on January 27, 2020

As the world looks for reliable and cost-effective means of housing energy for long periods of time, a new study is proposing using mountains and gravity as giant storage systems. The paper’s author, Julian Hunt, a researcher at the International Institute for Applied Systems Analysis, tells us about his findings.

As the global economy attempts to further distance itself from fossil fuels, renewable sources of energy are receiving increasing attention.

Yet for all the potential of green energy sources – be it solar or wind power – there remains the unavoidable problem of intermittency. Wind power generation is contingent on windy conditions, just as solar is reliant on it being sunny, meaning predictable energy generation is never a given.

In order to ensure the grid has enough energy in its system – and avoids blackouts – long-term energy storage is required. Only then will there be enough power to keep the lights on in the event of a sunless or still day.

While traditional lithium ion batteries are able to store energy for short amounts of time, they are insufficient when it comes to long-term energy storage. And while there is evidence to suggest pumped hydro-storage might be able to store energy for longer periods, with large generation capacities, it remains incompatible with grids with smaller demand.

However, a new paper to come out of the Austria-based International Institute for Applied Systems Analysis (IIASA) has proposed a new concept that could be the answer to the storage service question. And the system is based upon that most awe-inspiring of topographical features: the mountain.

Going off-piste: introducing MGES
Known as mountain gravity energy storage (MGES), the technology works by simply transporting sand or gravel from a lower storage site to an upper elevation, storing potential energy from the upward journey and releasing it on the way back down. The higher the height, the greater the amount of stored energy, claims the research.

The paper’s writer is Julian Hunt, who headed up the IIASA team of researchers. It also proposes that MGES could be combined with hydropower in the case of river streams on a summit, whereby water, in periods of high availability, could replace sand and gravel in the storage vessels.

Yet, the concept of gravitational energy is not entirely new, says Hunt, who has published previous papers on its potential. He also alludes to an attempt by Bill Gates back in 2012 to create an energy storage system by transporting gravel on ski lifts. The project was later abandoned.

“He spent several million dollars trying to develop the technology, but gave up in the end,” says Hunt. “But if you want storage for the long term, it’s a still a viable alternative.”

read more
Fractal Energy Storage ConsultantsPeak Performance: Could Mountains Create Long-Term Energy Storage?

Lithium-Ion Startups Attract Lion’s Share Of Energy Storage Venture Capital in 2019

on January 24, 2020

Venture capital firms poured nearly $2 billion into battery storage companies in 2019.

The new report by Mercom Capital keeps tabs on how publicly known VC funding was allocated to energy storage, smart grid and energy efficiency companies. These transactions would include mergers and acquisition activity, as well.

Mercom reported that battery storage attracted $1.7 billion worth of investment last year, compared to $300 million for smart grid companies and $298 million for energy efficiency entities.

The global funding picture include venture capital, private equity and corporate VC investments. The total for the combined storage, smart grid and efficiency sectors was down 22 percent compared with the $3.9 billion moved in 2018, according to Mercom.

Battery storage, however, doubled year over year even though the $1.7 billion was spread out over fewer deals than in 2018. The increased investment was buoyed by Volkswagen’s $1 billion capitalization in Northvolt, a battery startup founded by two former Tesla executives, in the second quarter.

Lithium-ion battery technology companies accounted for 80 percent of the energy storage VC picture. Venture capital also put money in other storage technologies such as flow batteries, fuel cells, solid-state and zinc-air, among others.

read more
Fractal Energy Storage ConsultantsLithium-Ion Startups Attract Lion’s Share Of Energy Storage Venture Capital in 2019

Wärtsilä’s Energy Storage Project to Boost Regional Grid Stability in Southeast Asia

on January 24, 2020

The technology group Wärtsilä has signed an Engineering, Procurement and Construction (EPC) contract for a new 100 MW/100 MWh total capacity energy storage project in South East Asia.

The energy storage system facility, including Wärtsilä’s GEMS, an advanced energy management software platform, and GridSolv solution, will be used for grid support purposes. The order was booked with Wärtsilä in Q4 2019. This contract comes in addition to the similar size contract announced in July 2019.

Wärtsilä is enabling the transition towards a 100% renewable energy future around the world by designing and building flexible systems that integrate renewables, traditional thermal assets and energy storage.

In 2018, the Association of Southeast Asian Nations (ASEAN) committed to meeting 23 percent of its primary energy needs from renewables by 2025. The region is aiming to leverage its abundant wind and solar resources and reduce its reliance on fossil fuels, especially as grid systems develop and economies grow. Wärtsilä’s new 100 MW/100 MWh energy storage project will help provide some of the reliability necessary to support South East Asia’s transition to renewable energy sources.

Wärtsilä’s GEMS platform has the ability to react near-instantly to smooth the integration of renewables, enabling the grid to emerge more stable and responsive. Grid support applications of GEMS include voltage and frequency regulation, reactive power support, spinning reserve, ramp rate optimization, renewable energy output smoothing and energy arbitrage. GEMS will make it possible for grid operators to rely on renewables as baseload power.

Wärtsilä Energy Business has delivered more than 35 EPC projects totaling 1500 MW in the South East Asia region.

read more
Fractal Energy Storage ConsultantsWärtsilä’s Energy Storage Project to Boost Regional Grid Stability in Southeast Asia

#SmartSolarStorage2020: Massachusetts City Saves Big Cash on Power Costs

on January 24, 2020

A municipal landfill in the City of Amesbury, Massachusetts, has become the latest site to host a solar-plus-storage project under the state’s SMART programme to promote economically viable clean energy.

New England-headquartered renewables developer Kearsage Energy and the technology provider / system integrator division of NEC Corporation (NEC) have completed work on the 4.5MW solar PV array, combined with a 1.6MW / 2.8MWh AC-coupled battery energy storage system, the pair announced earlier this week.

The project’s partners also put numbers on the expected economic benefits. The City of Amesbury will save around US$4 million in municipal spending on energy over 20 years, panning out at US$200,000 or so every year. This is from a combination of energy credits, lease revenue and tax generated by the site’s operations.

Connected to National Grid, the battery and PV system will play into the New England ISO (NE-ISO) markets, which made provisions to enable energy storage to participate in its wholesale markets during 2019. Along with the Solar Massachusetts Renewable Target (SMART) incentive and the state’s Clean Peak Standard, which has put a higher value on low carbon-generated electrons injected to the grid at times of peak demand than fossil fuel power, the region became a hotbed of solar-plus-storage activity last year.

Public-private partnerships key to unlocking value
While reported on multiple technology providers including NEC and Sungrow hitting that market last year, for Kearsage, this is the company’s first project to include energy storage as well as solar in a pipeline that Kearsage claims totals 250MW. Kearsage said it has built up partnerships with more than 40 public organisations in New England and in New York – and even more recently emerged hot market for battery storage – and the City of Amesbury is not exception.

“Our mission at Kearsarge is to develop sustainable energy solutions in public-private partnerships that boost local economies, provide budgetary relief for municipalities, and enhance community life using underutilised resources like landfills,” Kersage managing partner Andrew Bernstein, said.

“The Amesbury project is a superb example of how all those objectives can be met when municipal leaders are forward looking and open to win-win partnerships.”

read more
Fractal Energy Storage Consultants#SmartSolarStorage2020: Massachusetts City Saves Big Cash on Power Costs

2 GW Pumped Storage Project Proposed on Navajo Nation Lands

on January 23, 2020

Over 2 GW of pumped hydro storage could be coming to Navajo Nation lands, as the Federal Energy Regulatory Commission has accepted developer Daybreak Power’s application for a preliminary permit for its proposed 2,200 megawatt Navajo Energy Storage Station.

The acceptance has been described as an “important early milestone,” but it doesn’t mean that development can begin full steam ahead yet, the permit hasn’t even been issued. Once it has been issued, there is still planning and permitting to be done.

The estimated $3.6 billion project would sit on Navajo Nation lands near the south shore of Lake Powell. The location is interesting because the project would technically be located in San Juan County, Utah, but the nearest city would be Page, Arizona.

Another important point of note is that the project plans outline the use of transmission infrastructure formerly used by the now-retired Navajo Generating Station coal facility.

If built, the project would clock in at 2,230 MW, which could provide 10 hours of continuous generation, with an average annual generation of 3,365 GWh, however, as the company shared with pv magazine:

“These are ballpark figures based on the proposed installed capacity and estimates for how often we’d be generating. We expect the figures to change as we refine the project and conduct engineering/feasibility studies.”

Unlike some pumped hydro plants, which use some of the energy generated while the water is released to re-charge the pump for the next use, Navajo will use solar and wind energy to pump water to the upper reservoir.

The issue of where this energy will go and who will be buying it is an entirely different matter.

The project’s $3.6 billion price tag is another issue, one not necessarily focused on if it will get financed, but rather how. Likely, developers will look to support financing by selling the generation via a power purchase contract, though there is also the possibility that grid operators might see value in the project as a transmission asset and choose to invest in it.

read more
Fractal Energy Storage Consultants2 GW Pumped Storage Project Proposed on Navajo Nation Lands

$3.6 Billion Energy Storage Project Rising From Ashes Of Coal Power Plant

on January 23, 2020

Whelp, that was fast. No sooner does the notorious coal-fired Navajo Generating Station shut its doors, when a massive renewable energy project jumps in to take its place. We’re talking about the proposed Navajo Energy Storage Station in Arizona, and it’s not just any old renewable energy project. It’s a 10-hour, 2,200 megawatt system, which puts it in the long duration storage category, which is something the US Department of Energy has been lusting after quite lustily.

Long Duration Energy Storage In The Time Of Trump
To be clear, the so-dubbed NESS project is still in the proposal and permitting phase. If all goes according to plan, it will be online in 2030 — just in time to absorb new wind and solar development in the area.

If and when NESS does go online, it could pull the rug out from under future plans for gas-fired power plants. The developer, Daybreak Power, is anticipating that NESS will provide wind and solar power to Los Angeles, Las Vegas, and Phoenix for 10 hours, lasting from peak daytime hours and into the night.

That 10-hour energy storage capability is key. The Energy Department has a whole initiative dedicated to long duration storage, which it defines as a minimum of 10 hours and up.

If you’re guessing that’s a recipe for decarbonizing the electricity grid, run right out and buy yourself a cigar.

That’s right, regardless of the Commander-in-Chief’s pro-coal rhetoric, the Energy Department has been promoting the coal-killing combo of renewables and energy storage hand over fist all throughout his tenure (for that matter, the recently impeached President* seems to have lost interest in coal, but that’s a whole ‘nother can of worms).

The Energy Department’s ARPA-E office for cutting edge R&D explains:

“Long-duration energy storage systems address grid needs beyond those covered by daily cycling. Such systems could provide backup power for several days, improving grid resiliency, or allow for the integration of even larger amounts of intermittent renewable sources like wind and solar.”

ARPA-E notes that long duration systems also have a role in daily cycling, which is where a 10-hour system like the NESS project would fit in.

“Such systems could help shape the output from individual wind and solar installations, improving the reliability of these resources and thus greatly increasing their value to the grid,” ARPA-E explains.

So. There.

read more
Fractal Energy Storage Consultants$3.6 Billion Energy Storage Project Rising From Ashes Of Coal Power Plant