AI, Energy Storage And The Electrification Of Transport

on January 27, 2020

We are on the cusp of the next major energy transition – a transition that will move us towards a more sustainable future where renewable energies replace fossil fuels. But this transition is not going to happen overnight.

Academics and analysts are predicting that it could still take decades for the world to wean itself from fossil fuels, since some of the key technologies needed to deploy renewable energy on a massive scale, have seen very slow improvements over the years. For this transition to be expedited, energy storage solutions need to be improved and batteries are going to play a huge role in this evolution.

Current batteries and what could be next

Although constant improvements have been made in the 150 years that batteries have existed, only four commercially relevant chemistries have made it to market. The last major development was the lithium-ion (Li-ion) battery, whose identification and development are widely credited to Professor John Goodenough. His research in the 1980s led to its commercialisation by Sony in 1991.

Due to a relatively high energy-to-weight ratio, Li-ion batteries became very popular and are still considered the most promising battery chemistry. Although Li-ion offers many advantages over previous battery materials, improvements can still be made.

Electric modes of transportation will be a major driver of battery technology advancements. Bloomberg New Energy Finance (BNEF) predicts that by 2040, 57% of all passenger vehicle sales and over 30% of the global passenger vehicle fleet will be electric. If the electric vehicle predictions being forecasted are accurate, the commercial batteries market offers unlimited opportunity.

As such, researchers from large multi-national corporations, academic institutions, and technology startups are all looking for the successor to Li-ion.

Everyone wants to discover a battery that has a faster rate of charge and a higher energy density. But how do we get there? Experts, scholars, and the media, continue to speculate about battery technology and what’s going to be the next big breakthrough. Will it be new organic compounds, solid-state batteries, or something completely revolutionary that doesn’t require changing the chemistry of the battery?

Most startups looking to improve the performance of batteries are looking at solid-state batteries or improving Li-ion batteries using new chemical compounds. The main challenges with new chemistry include time and resources. If advancements are discovered in a lab environment, scaling the technology to commercialisation is a very, very long road.

According to Professor Paul Shearing, the Royal Academy of Engineering’s chair in emerging battery technologies: “The next 10 years are going to continue to be lithium-ion dominated. It’s taken a long time to get to this productivity and technological maturity level. For anything to catch up will take a while.”

Click Here To Read More

Share this post:
Fractal Energy Storage ConsultantsAI, Energy Storage And The Electrification Of Transport