Massachusetts Deploys Utility-Scale Energy Storage

on September 17, 2018

RTO-InsiderNational Grid has begun operating a vanadium redox-flow battery (VRB) with its 1-MW solar PV array in Shirley, Mass., to demonstrate utility operation of storage.

The company was the prime recipient of an $875,000 Massachusetts grant awarded to an application team that also includes Vionx Energy, Worcester Polytechnic Institute and the Energy Initiatives Group. (See Massachusetts Awards $20M in Energy Storage Grants.)

Carlos Nouel, vice president of innovation and development at National Grid, told RTO Insider that “the Shirley project will serve as a test bed for integrating storage and solar through the use of flow batteries, and support the development of new frameworks for dispatching stored solar power.”

Massachusetts lags far behind California in deploying utility-scale energy storage, but it is trying to integrate the technology into its power supply.

California utilities must procure more than 1.3 GW of energy storage by 2020. As of August, the state’s three largest investor-owned utilities are in the process of actually procuring nearly 1.5 GW, with about 332 MW currently online, according to a report last month by the California Energy Commission.

In contrast, Massachusetts last year said the state’s utilities must procure a combined 200 MWh of energy storage by Jan. 1, 2020. ISO-NE in April reported more than 500 MW of storage capacity in its interconnection queue. (See Overheard at the Energy Storage Association Annual Conference.)

Home-Grown Storage

Vionx (rhymes with “bionics”) is supplying the energy storage system for the Shirley solar project, which lies about 30 miles west of the company’s lab and headquarters in Woburn, Mass.

The company uses vanadium rather than lithium for energy storage, seeing the alternative flow battery technology as the best fit for utility-scale applications, including microgrids or industrial, behind-the-meter systems.

The use of vanadium in a flow battery was first explored in the 1930s and only made workable in Australia in the mid-1980s. Today, many companies use the technology, from giant Sumitomo to tiny CellCube, a VRB manufacturer trying to vertically integrate with its own vanadium mine in Nevada.

A VRB stores chemical energy in the form of vanadium-based electrolyte and generates electricity by inducing a reduction-oxidation (redox) reaction: that is, a transformation of matter by electron transfer across an ion exchange membrane, within a battery stack. The reaction is achieved by either applying an electrical load (discharge) or an electrical supply (charge) to the battery stack as the electrolyte is flowing or being pumped across the membrane.

Click Here to Read Full Article

Share this post:
Fractal Energy Storage ConsultantsMassachusetts Deploys Utility-Scale Energy Storage