Don’t Minimize The Resilience Role Of Microgrids. They’re Key To Mitigating Wildfire And PSPS Risk

on November 19, 2019
Utility-Dive

In a recent Utility Dive opinion piece, Scott Aaronson, vice president of security and preparedness at the Edison Electric Institute, minimizes the role of microgrids in providing our communities energy resilience. He defends the actions of California’s utilities in shutting off power for millions of customers to mitigate the risk of devastating wildfires, which are often caused by the utilities’ infrastructure.

But many Californians — including Governor Gavin Newsom, who called the situation “unacceptable” — are questioning whether broad grid area shutoffs are the best way to deal with increasing wildfire risks.

The role of Community Microgrids
No silver bullet exists, and most analysts agree that a multi-pronged solution is needed. However, microgrids can and must be a key component of this solution — in particular, Community Microgrids, a new approach for designing and operating the electric grid. Community Microgrids are stacked with local renewables and staged for resilience, providing communities economic, environmental and resilience benefits.

Like traditional microgrids, Community Microgrids can island from the larger grid and operate independently. Unlike traditional microgrids, which serve a single customer, Community Microgrids serve an entire community by ensuring indefinite renewables-driven backup power for critical community facilities such as fire stations, water and communications infrastructure, hospitals and emergency shelters.

Community Microgrids can keep critical loads online indefinitely during power outages of any length. Depending on the sizing of the battery storage and the amount of sunshine, they can keep even more of the electric load online for certain periods. The levels of Community Microgrid resilience in the chart below are achieved via a net zero level of solar to a community in California with energy storage capacity equating to two hours of the nameplate solar capacity (i.e., 2 kWh of energy storage for every 1 kW of solar). Importantly, at least 10% of the load is maintained indefinitely, without interruption, while the entire load can be maintained at least 25% of the time:

Click Here To Read More

Share this post:
Fractal Energy Storage ConsultantsDon’t Minimize The Resilience Role Of Microgrids. They’re Key To Mitigating Wildfire And PSPS Risk