Microgrids Are Powering The Future At MSU

on September 17, 2019

A centralized power source can create issues when it unexpectedly goes offline. When a glitch led the Montclair State University’s (MSU) state-of-the-art microgrid to realize that an outage had occurred, it kicked in and isolated the University from the main grid , fired up its generators and seamlessly powered the entire campus for nine hours. MSU became an island.

So seamlessly, in fact, that no one in New Jersey’s second-largest university realized that the energy being provided to the more than 21,000 students was being produced just below their feet. “No one knew we were in island mode, until my phone told me,” explained Vice President for University Facilities Shawn Connolly, “That was the first time I ever got that message for a real situation.” Once the main grid issue was fixed, MSU’s microgrid relinquished the power production role without any issues.

Grid Dynamics

It was a triumphant success for the microgrid, having only been installed for a month before its impromptu real-world test. Consisting of a 5.4-megawatt natural gas turbine with enough power to power 4,300 homes, the university’s microgrid also incorporates boilers and chillers capable of providing both efficient heating and air-conditioning. However, MSU’s grid boasts additional measures set to boost its resilience. It can run indefinitely on natural gas and more than four days on fuel oil, ensuring its role as an autonomous power source in case the power grid fails.

The need for such a microgrid arose after Hurricane Sandy devastated the United States’ northeastern seaboard in 2012. Much of New Jersey’s electrical infrastructure was destroyed and disruptions meant Montclair State was unable to function for a week . This led to MSU’s decision to upgrade its backup power generation capabilities to become more resilient and ensure the university would be functional no matter what.

Globally, microgrids are becoming an increasingly popular energy option. These scaled-down, versions of standard electrical grids incorporate local energy sources and reduce reliance on larger utility companies while promoting efficient low-carbon energy production. Micro and mini grids are already revolutionizing electrification efforts in Africa and the Pacific, while also providing a low-cost alternative for consumers in major cities. Microgrid projects are creating the blueprints for wide-spread implementation in developing nations but also as a primary backup system for densely populated centers reliant on conventional power grids and utility companies.

Efficient Economics

The University’s microgrid provides more than just energy security and resilience – the grid has saved the university over US$4 million in energy costs since its implementation. MSU’s microgrid controls and manages its energy use based on real-time pricing – much like the large-scale Tesla battery that constitutes South Australia’s Hornsdale Power Reserve. The back-up system in South Australia revolutionized the state’s electrical grid in a similar way to MSU. Faced with major blackouts as a result of severe storm events South Australia was searching for a reliable, resilient back-up electrical system. Tesla answered the call and delivered a 100MW battery of kicking in within a fraction of a second which has saved the state from plunging into darkness on more than one occasion.

read more
Fractal Energy Storage ConsultantsMicrogrids Are Powering The Future At MSU

Ontario IESO Launches Its First-Ever Local Electricity Market

on September 5, 2019

The Regional Municipality of York, Southern Ontario, Canada, will be the proving ground for a local electricity market, aimed at helping integrate distributed energy resources (DERs) into the grid.

Ontario’s Independent Electricity System Operator (IESO), is set to launch a demonstration of how solar panels, energy storage and customer-sited demand side response (DSR) connected to the distribution network can be used to drive down costs of the IESO’s transmission operations.

The IESO said just before the end of August that it will launch the project, which will in part help the network to “find affordable alternatives to building new transmission infrastructure,” as well as hopefully creating a competitive marketplace to help bring down consumer costs. Ontario’s Alectra Utilities and the government ministry Natural Resources Canada are supporting the IESO on the project.

“When we’re out talking to communities, one common theme we hear is a desire to have more choice in how their electricity needs are met,” Ontario IESO president of policy, engagement and innovation, Terry Young, said.

“This pilot will help us learn if we can enable that choice while also reducing costs for Ontarians.”

In common with similar, relatively small-scale trial and projects launched in Cornwall, England, in Australia and in Japan, the local electricity market seeks to leverage existing resources, for example by turning down customer demand for power from the grid through DSR or by storing energy in batteries generated from solar in the daytime to push into the grid at peak times.

“This project will help us better understand the potential of using distributed energy resources in place of traditional infrastructure by evaluating them in real-world applications,” Alectra Inc CEO and president Brian Bentz said.

read more
Fractal Energy Storage ConsultantsOntario IESO Launches Its First-Ever Local Electricity Market

UC San Diego Launches Study On Recycling EV Batteries Into Energy Storage

on August 29, 2019

With the expected uptick in EV adoption over the next few years, companies around the world are looking for ways to repurpose used EV batteries that can have up to a decade of life left in them, and energy storage is one potential application.

Previous second-life projects often included EV manufacturers. In October, Nissan and EDF Energy announced a project that will combine used EV batteries with demand response capabilities developed by the U.K. energy company. Also in 2018, Wärtsilä and Hyundai Motor Group partnered on a project to develop uses for second-life EV batteries in Germany. Hyundai estimates that in 2025, there will be 29 GWh of second-life EV batteries available.

A focus area of the agreement between Cummins and UC San Diego will be stationary energy storage system performance under grid energy storage applications, Katie Zarich, a spokesperson for Cummins, told Utility Dive. University researchers will perform tests and develop an outdoor second-life demonstration system comprised of Cummins battery modules, according to a statement.

For Cummins, which founded its electrified power business in 2018, the partnership will provide valuable data on the aging behaviors of its battery modules.

“Electrification has the potential to play an enormous role as we move toward decarbonization of many industries, but in order to maximize that potential, it’s crucial that we focus on the sustainability of the entire product life cycle,” Julie Furber, vice president of electrified power of Cummins, said. “One piece of the puzzle that requires additional research is the second-life of batteries, and Cummins now has a highly-skilled and capable partner in UC San Diego as we move towards the development of reuse solutions.”

Used EV batteries maintain a significant battery capacity, up to 70%, according to Nissan and EDF. While this may no longer meet the requirements to power a vehicle’s drivetrain, it is sufficient capacity for less demanding applications, Cummins said.

The Indiana-based company also pointed out that repurposing batteries increases sustainability as it postpones recycling, which has proved to be a challenge.

read more
Fractal Energy Storage ConsultantsUC San Diego Launches Study On Recycling EV Batteries Into Energy Storage

How Much Energy Storage Costs Must Fall To Reach Renewable Energy’s Full Potential

on August 8, 2019

The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity. But how far must energy storage costs fall? In a study published August 7 in the journal Joule, MIT researchers answer this question. They quantify cost targets for storage technologies to enable solar and wind energy with storage to reach competitiveness with other on-demand energy sources. They also examine what kinds of batteries and other technologies might reach these targets.

“One of the core sources of uncertainty in the debate about how much renewable energy can contribute to the deep decarbonization of electricity is the question of how much energy storage can be improved” says senior author Jessika Trancik, an associate professor of energy studies at the Massachusetts Institute of Technology. “Different assumptions about the cost of energy storage underlie significant disagreements between a number of assessments, but little was known about what costs would actually be competitive and how these costs compare to the storage technologies currently being developed. So, we decided to address this issue head on.”

“Quantifying cost targets for energy storage required a new piece of insight,” Trancik says, ‘about how patterns of the renewable energy supply, and fluctuations in this supply, compare to electricity demand profiles. Large but infrequent solar and wind shortage events are critical in determining how much storage is needed for renewables to reliably meet demand, and it’s important to understand the characteristics of these events.”

In the paper, Trancik and her colleagues estimated the costs of using storage together with wind and solar energy to supply various output profiles reliably over twenty years. They then estimated cost targets for energy storage that would enable plants to reach cost-competitiveness with traditional electricity sources. They also evaluated current and future energy storage technologies against the estimated cost target.

The researchers’ model optimizes storage costs by using whatever combination of storage and solar and wind gives the lowest electricity cost. This often means oversizing solar and wind capacity relative to an intended output, to decrease the amount of storage needed.

The analysis also explored the characteristics that distinguish various storage options. Some technologies are more suited to inexpensively storing large quantities of energies but outputting it slowly, at lower power, while others can cost-effectively store smaller amounts that can be quickly discharged at high power. So the model needed to capture these differences, Trancik says.

The research found that technologies with energy storage capacity costs below $20/kWh could enable cost-competitive baseload power that is available all of the time over a twenty-year period, though this target varies with the target output profile and location. They found that electricity costs respond more to costs of storage energy capacity than power capacity.

read more
Fractal Energy Storage ConsultantsHow Much Energy Storage Costs Must Fall To Reach Renewable Energy’s Full Potential

One Oil Major Is Taking Energy Storage Very Seriously

on March 23, 2018

the-motley-foolFrench oil giant Total (NYSE:TOT) may not be the first company you think of when renewable energy comes up, but it should be near the top of the list. The company owns a controlling stake in solar manufacturer SunPower (NASDAQ:SPWR) and battery company Saft, and its list of renewable assets seems to grow every day.

Saft is making some interesting moves, most recently partnering with some other power players in the energy business to research better battery technology. If successful, Total could emerge with a strong position in one of the biggest growth industries in energy.

French oil giant Total (NYSE:TOT) may not be the first company you think of when renewable energy comes up, but it should be near the top of the list. The company owns a controlling stake in solar manufacturer SunPower (NASDAQ:SPWR) and battery company Saft, and its list of renewable assets seems to grow every day.

Saft is making some interesting moves, most recently partnering with some other power players in the energy business to research better battery technology. If successful, Total could emerge with a strong position in one of the biggest growth industries in energy.

read more
Fractal Energy Storage ConsultantsOne Oil Major Is Taking Energy Storage Very Seriously

No Huge Energy Storage Breakthrough Needed For Renewable Energy To Flourish

on March 6, 2018

CleantechnicaIn the last couple of years, there has been a growing a number of news articles and blog posts published about energy storage, particularly in the form of battery systems. This interest is very reasonable and the news is exciting because these systems can fill in wind power and solar power electricity production gaps. In many places, they could replace gas-powered peaker plants. The costs have gotten that low for renewables + storage. This has actually been the case in some places since 2016, but the story keeps getting better and the solution is competitive in more and more locations practically by the day. (In fact, this was the key topic of the podcast we just published.)

“New research suggests that solar power and battery energy storage are now competitive with natural gas peaker plants due to falling costs. The research focuses on specific markets in the USA but forecasts that 10 GW of natural gas peaker plants could be taken offline by 2027. Other, more aggressive predictions say 2020 could be the year,” one energy storage journalist nicely summarized the latest news.

Tesla’s huge battery system in Australia has also generated some buzz. The system went up considerably quicker than Elon Musk promised, has been working as imagined, and has even been influencing prices in the region. It was the largest lithium-ion battery storage to be implemented anywhere in the world, but it’ll likely be average within a few years.

Energy storage in the form of battery systems can be integrated for greater energy security, for grid support, and to be installed in places where pumped hydro isn’t feasible.

However, it appears as though pumped hydro storage is being overlooked with all the hype about batteries. It still has huge potential to help balance clean, renewable energy. In fact, all the discourse about battery storage seems to be supporting the idea that this form of storage is going to solve clean energy intermittency issues, but there are gaps in what batteries can provide, so let’s take a look at pumped hydro so we can see just how large a factor it could become.

read more
Fractal Energy Storage ConsultantsNo Huge Energy Storage Breakthrough Needed For Renewable Energy To Flourish

Solar panels and energy storage: the next big thing?

on December 29, 2017

On a dark and chilly winter day, generating your own electricity from solar panels perhaps isn’t at the top of your thoughts. But there’s a growing trend of linking your solar panels to a home battery to store your electricity for later.

The likes of Tesla and Nissan have both launched home batteries that are slim enough that you might not want to hide them away – but they come with a big price tag. Meanwhile, Ikea’s offer of solar and storage claims to save the average household up to 70% on their annual electricity bill.

Energy companies are also getting in on the act, including Eon and EDF Energy – both now sell solar panels paired with home batteries.

We’ve taken a look at what these brands and more are offering, plus how home batteries work, and what you need to think about if you’re considering buying one.

Tesla, Nissan and top brands’ home energy storage

An energy storage system, or home battery, lets you capture electricity so you can use it at a time that suits you. This could be electricity generated by your solar panels or wind turbine, or it could be electricity from the grid at a time when it’s cheaper, if you have a time-of-use tariff.

Tesla’s Powerwall is one of the best-known examples of this relatively new technology, from a company better known for its electric cars. The Powerwall links with the Tesla app, so you can check how much electricity you have stored, solar panel generation (if you have them), and car charging.

Costing around £5,900, Tesla claims it makes ‘almost no noise’ and is ‘maintenance free’. Fellow car manufacturer Nissan has launched xStorage, which reuses Nissan’s electric vehicle batteries to store energy at home. Nissan claims it’s the ‘most reliable and affordable home energy storage solution on the market’. It costs £4,850 upwards, but has a smaller capacity than the Tesla. Varta has a 130-year tradition of making batteries, so perhaps it’s no surprise that it’s an early entrant into home energy storage. It currently makes home batteries that are around the size of a washing machine, which it says give customers ‘energy autonomy’. Its systems cost from £3,380.

Click Here to Read Full Article

read more
Which UKSolar panels and energy storage: the next big thing?

Lithium-ion energy storage: Key component of America’s renewable energy future

on September 14, 2017

the washington timesOne of the more interesting storylines in conjunction with the recent total solar eclipse in the United States was how it might affect power plants that rely on the sun to produce electricity.

Many in the energy industry wondered how the power grid would function when the sun went dark in the middle of the day, since solar contributes nearly 42,000 megawatts, or 5 percent, of peak electricity demand. How would utilities manage the relatively rapid down-ramping, followed by an equally rapid up-ramp of power flowing from solar plants?

Fortunately, both the grid and the plants powering it proved remarkably resilient to the energy and demand fluctuations.

But as the U.S. shifts away from traditional fuels and relies more heavily on renewables like wind and solar for power generation, the question becomes even more important. How will we keep the lights on and air conditioning running and our phones and electric vehicles charged when the sun goes down or the wind stops blowing?

This is where reliable and efficient advanced energy storage will play an increasingly crucial role in grid stability in the years to come. According to the U.S. Energy Information Administration, approximately 10 percent of total U.S. energy consumption and 15 percent of electricity generation came from renewable sources in 2016. The U.S. Department of Energy has set a goal of 30 percent of U.S. electric generation to come from renewables by 2025. Solar and wind power will make up the lion’s share of that new renewable generation capacity.

While natural gas, coal and nuclear power will continue to provide a significant portion of our baseload power for some time to come, intermittent energy sources play a role too — and this role is expected to increase. If we’re truly to make renewables an economically viable, baseload option, we must have ways to store large amounts of power for use when renewables can’t meet the demand.

Click Here to Read Full Article

read more
Energy Storage NewsLithium-ion energy storage: Key component of America’s renewable energy future

USTDA backs tender request for 25MW hybrid solar-storage in Sierra Leone

on June 20, 2017

Energy Storage NewsThe US Trade and Development Agency (USTDA) has put out a tender request for a 25MW hybrid solar-diesel-storage project in Sierra Leone. 

The facility will be developed by local independent power producer (IPP) Solar Era Holdings, a subsidiary of global EPC Africa Growth Energy Solutions.

The project is set to be delivered in two phases; phase 1 is a 5MW grid-connected facility in Bo, the country’s second largest city. Phase 2 is the larger 20MW hybrid facility that is expected to be a solar-diesel-battery plant. The combination of the three technologies is ideal for Sierra Leone; with much of the population in rural communities that lack access to the national grid. Pairing solar with diesel allows the latter to offset solar’s fluctuating energy source for harmonised delivery of power. The storage component also serves to stabilise the grid via frequency regulation and ramp-rate control.

The tender pertains to finding an EPC for phase 1 of the project. USTDA is currently supporting the development of phase 1 and the launch of phase 2 with a grant which will fund a feasibility study – currently being carried out by Power Engineers Incorporated – to assess the technical, financial and economic viability of the project.

This project represents an opportunity for US engineering and design companies to partner with a Sierra Leonean firm as the country seeks to increase its energy generation capacity as well as diversify its energy mix.

The deadline for submissions is 16 June 2017. 

Back in April, the USTDA provided grants for one of Sub Saharan Africa’s first utility solar-plus-storage projects, located in Kenya. 

Click Here to Read Full Article

read more
Energy Storage NewsUSTDA backs tender request for 25MW hybrid solar-storage in Sierra Leone

Ocean Power Technologies Deploys Commercial PowerBuoy with Energy Storage

on September 1, 2016

power magazineOcean Power Technologies (OPT) deployed its first commercial PB3 PowerBuoy—a wave energy conversion system that incorporates energy storage—off the coast of New Jersey this July.

The Pennington, N.J.–based firm has been working to advance its PowerBuoy technology since the firm was founded in 1994. Development of the wave energy conversion technology for naval and civilian applications was catalyzed by small-business innovative research (SBIR) funding awards from the U.S. Navy.

Click Here to Read Full Article

read more
Power MagazineOcean Power Technologies Deploys Commercial PowerBuoy with Energy Storage