A Breakthrough Of Monitoring Energy Storage At Work Using Optical Fibers

on July 31, 2018

Power-TechnologyEnergy storage is the key bottleneck of today’s power industry, attracting greater levels of investment to find alternatives to the ever popular, and intensely fought-over, lithium resources. Here, Scarlett Evans rounds up the new material contenders in battery technology.

As global power demand grows, so does the necessity to find sustainable alternatives to traditional battery storage systems – not only to extend smartphone and laptop life but also to power electric vehicles (EVs) and store energy from wind and solar sources.

Lithium-ion (Li-ion) batteries have long been the favourite power source for modern technologies, overtaking lead-acid batteries due to their longevity and energy density. However, lithium’s rising costs – going up by 240% in 2017 according to the Financial Times – in addition to fears over supply chain, resource depletion and reports of sudden battery drains, have caused developers to look elsewhere for effective, low-carbon battery bases.

So far, the search has uncovered a range of materials with potential to solve the energy storage problem, including sodium, cobalt, water and gold. But with lithium now a staple of modern technology, will other materials ever reach the same level of commercial-scale success?

Ammonia boosts efficiency

Most recently, German industrial firm Siemens announced the launch of a £1.5m pilot project trialling the use of ammonia as a new form of energy storage. Traditionally used as a fertiliser, Siemens has voiced its belief that the ammonia project may have an advantage over other energy storage methods due to its repurposing of pre-existing technologies and hardware.

The project will take place at a proof-of-concept facility in Harwell, Oxfordshire, UK where the team will attempt to turn electricity, water and air into ammonia without releasing carbon emissions. The ammonia produced will then be stored in a tank, to be burned to generate electricity, sold as fuel for vehicles, or used for industrial purposes such as refrigeration.

In the instance of ammonia powering electric vehicles (EVs), rather than use the chemical directly, the scheme will extract the hydrogen only for use hydrogen vehicles.

The main benefit, Siemens claims, is cost-effectiveness, as is the case for many alternatives to lithium. Indeed, for many the aim is to simply find a cheaper battery that can provide the same storage capacity and longevity.

Click Here to Read Full Article

Share this post:
Fractal Energy Storage ConsultantsA Breakthrough Of Monitoring Energy Storage At Work Using Optical Fibers